
05/22/03
15:58:43 1README

#--

| SLIPREAL |

A collection of MATLAB programs to generate stochastic slip
distributions, in particular useful for calculating near-source
strong ground motions from a "realistic" faulting model.
#
--
Author: P. Martin Mai (mai@seismo.ifg.ethz.ch)
Institute of Geophysics, ETH Hoenggerberg
CH-8093 Zurich, Switzerland
http://seismo.ethz.ch/staff/martin/martin.html
--
#
#
REQUIREMENTS
#
In order to run the m-files of the SLIPREAL-package, you need
to have (at least) MATLAB 5.0 with the following toolboxes:
signal-processing and statistics. Aside from that it should
run on any platform supporting MATLAB.
#
#
INSTALLATION
#
Unzip the SlipReal.zip file into a directory of your choice,
and add this directory to your MATLAB search path. That will
make sure you can run SlipReal whenever you launch MATLAB.
#
#
RUNNING SLIPREAL
#
There is a (very small) example (Example1.mat) that you can
use to get started, containing sample input structures and
output arrays generated by SlipReal. Aside from that, this
README or typing ’help SlipReal’ at the MATLAB prompt is all
you need in order to successfully generate stochastic slip
distributions.
#
#
DISCLAIMER
#
These programs (m-files) come at no quarantee whatsoever, and
I am not responsible for the results other people obtain and
publish based on the use of these codes. SLIPREAL has been
tested in various applications, but certainly not exhaustively,
and I do expect that users find bugs and errors. Please report
them directly to me, and I try to fix them.
Using these routines may not appear very straight-forward,
user-friendly or well-documented -- that is simply because the
package has grown over time, and originally was not meant to
be distributed. I may go back to rewrite part of it sometime
in the far future to enhance user-friendliness. In any case,
whenever you have questions or comments, please contact me;
I’ll try to be of as much help as possible, but I certainly
cannot run the programs for you.
#
#
REQUEST
#
If you find these programs useful, and you get to the point of

publishing work in which you used SLIPREAL, please reference
the following two publications. Thanks.

Mai, P.M., and G.C. Beroza (2002). A spatial random-field model
to characterize complexity in earthquake slip, J. Geoph. Res.,
107(B11), 2308, doi:10.1029/2001JB000588, 2002.
Mai, P.M., and G.C. Beroza (2000). Source-scaling properties
from finite-fault rupture models, Bull. Seis. Soc. Am., 90,
604-615.
#
#
#
HAVE FUN !!
#
Martin Mai, May 2003
#
--
#
#
THE PROGRAMS
#
SlipReal is using the work of Mai & Beroza (2002) in which we
show that finite-source slip models of past earthquakes can be
characterized by a spatial random-field model. Testing various
auto-correlation functions, we observe that the correlation
lengths scale with seismic moment. Assuming a fractal model,
inferred finite-source models show a slightly different fractal
dimension as proposed by Andrews (1980). These results, in
conjunction with scaling relations on the source dimensions
(Mai & Beroza, 2000; Wells & Coppersmith, 1994), can be used
generate stochastic slip distributions which capture the
slip complexity as imaged for past earthquakes.
#
Having provided that code with the essential fault parameters,
fault width, fault length, moment magnitude and faulting style,
the code lets you choose the auto-correlation function, the
corresponding correlation lengths (fractal dimension), spatial
sampling etc, in order to generate a stochastic slip map.
The underlying algorithm is based on the spectral synthesis,
described by Pardo-Iguzquiza and Chica-Olma (1993).
#
#
TO GET STARTED
#
You can get a head-start by just giving the source parameters
fault width, length, and moment magnitude as srcpar = [W L M],
and the faulting mechanism FM as ’ss’ or ’ds’ for strike-slip
or dip-slip earthquakes, respectively. E.g., to simulate a
slip on the fault plane for an earthquake like the 1995 Kobe
(Japan) earthquake (length ˜60km, width ˜20km, Mw = 6.9), just
set srcpar = [20 60 6.9]; and then call SlipReal as follows
[S,par]=SlipReal(srcpar,’ss’)
The code will run once, telling you which default values it has
chosen, displaying the resulting slip map, and generating the
output structure PAR that can then be used to run the code with
different input values. As simple as that! Of course you have
more control over the results if you specify the entire set of
input arguments (as given below).
#
#
NOTE
#
In case you do want to compute synthetics seismograms for the

05/22/03
15:58:43 2README

slip model(s) you generate, I have put together a few small
routines to simulate the hypocentral position, which can then
be checked against the slip map (RandHypo.m, CheckHypo.m).
The ratio of rupture- to shear-wave velocity can also be
randomized (RandVrat.m), and, provided you specify a velocity-
density structure (see rpar in Example1.mat), be used to
compute the rupture onset times over the fault plane (function
RupTimeGrid2.m). Together with CalcTrfromM.m, which computes
a single, constant rise-time value for the entire fault, the
SlipReal package could be used to generate a complete
KINEMATIC source model for strong motion calculations.
All that remains is to define an appropriate slip-velocity
function, and deploy a code to compute the synthetics near-
source seismograms (i.e. discrete-wavenumer, isochrone,
finite-differences).
CAUTION: This source characterization is kinematic, and hence
generates source models that may not be physically realizable.
Nothing in the code prevents you to have the rupture propagate
at 99% light speed, with rise time 1e8 secs!. So double-check
your results with some rupture dynamic considerations in the
back of your mind. We are working on putting more earthquake
physisc in these type of simulations (for references see
http://seismo.ethz.ch/staff/martin/publications.html), and
plan to publish/distribute that as soon as we are confident
in our methodology.
#
Below you find (hopefully) all you need to understand and run
SLIPREAL. You get the same information, if you type
’help SlipReal’ at the MATLAB prompt.
#
#---
#
% [S,par] = SlipReal(srcpar,’mech’,’acf’,corr,seed,samp,grd, ...
% nexp,wlevel,taper,depth,dip,outfile,fig);
% simulates a dislocation model for given source parameters and
% source mechanism. If not given, source dimensions can be
% computed from empirical scaling relations.
% The slip on the fault surface is calculated using the spectral
% synthesis method in which the slip-amplitude spectrum is defined
% through a spatial auto-correlation function or a power law decay;
% the phase is random in U(-pi,pi), but the entire field obeys
% Hermitian symmetry.
% The variables SRCPAR and MECH are required input; for all other
% input parameters, an empty array [] will select the default values
% (see below).
%
% INPUT:
% srcpar - array-structure with ALL source parameters OR
% cell-array with source parameters and string to identify scaling;
% OR simple vector with source parameters
% for the last two options, srcpar can be of the form
% {Mw ’rel’} -- source dimensions computed from scaling laws
% rel == ’MB’ uses Mai & Beroza (2000)
% rel == ’WC’ uses Wells & Coppersmith (1994)
% rel == ’WG’ uses USGS WorkingGroup99 M vs. A (2000)
% {A ’rel’} -- area A (in km^2), rel is ’MB’ or ’WC’
% [W L] -- Mw estimated from Wells & Coppersmith (1994),
% [W L Mw] -- D computed from given parameters
% [W L Mw D] -- Mw will be scaled to match given D!
%
% NOTE: give fault width W and length L in km, mean slip D in m
%
% If srcpar is given as array-structure, make sure the naming

% in your array is EXACT the same as needed in the code;
% the best idea is to run SlipReal once with standard
% input values, and then modify the entries in the
% output-structure PAR which then can be used as input.
%
% mech - faulting mechanism for the simulated event, needed to
% compute source parameters from scaling relations
% ’ss’ or ’SS’ for strike-slipevents;
% ’ds’ or ’DS’ for dip-slip events
% ’al’ or ’AL’ if both types should be considered
% (may be useful in case of normal faulting events)
%
% acf - string to denote autocorrelation function
% ’ak’ or ’AK’ for anisotropic von Karman ACF
% ’ex’ or ’EX’ for exponential ACF
% ’fr’ or ’FR’ for the fractal case (power law decay)
% ’gs’ or ’GS’ for Gaussian ACF [needs input corr. length]
% if [], default ’ak’ is used
%
% corr - correlation length and/or spectral decay parameters
% [az ax] for Gauss or exponential ACF
% [az ax H] for von Karman ACF H = Hurst number)
% [D kc] for fractal slip where D is the fractal dimension;
% kc: corner wavenumber beyond which the spectrum decays;
% kc is related to the source dimensions, and is computed
% as kc = 2*pi/(sqrt(L*W)) if it is not given
% [] if corr is an empty matrix, the relevant parameters for
% the given autocorrelation function will be computed
% (NOT true for the Gaussian since no relations have been
% established between corr length and source parameters)
%
% seed - structural array of seed values for the random-number generator,
% called at various locations in the code; if seed == [], then
% the code uses an expression like
% ’Rseed = sum(100*clock);’
% ’randn(’seed’, Rseed);’ <-- uses MATLAB4 generators!!
% to generate the random numbers; the value Rseed is stored in
% the output structure par.
% The sequence is as follows, and is the same that is returned
% by the code:
% seed.SS = SSseed; 1x2-array, used in SpecSyn2
% seed.WL = WLseed; 1x1-array, used in WaterLevel
% seed.CS = CSseed; 2x2-array, used in CalcSigfromD
% seed.RC = RCseed; 3x2-array, used in CalcDimfromM
% seed.RWC = RWCseed; 3x2-array, used in CalcDimWC
% seed.CR = CRseed; 1x1, 4x2, 5x2, used in CalcCorrfromLW
% Hence, you can run the code once, get the corresponding array
% and use it again to create the EXACT SAME random slip model.
%
% samp - sampling of dislocation model in z,x direction [dz dx]
% NOTE: the final sampling may be finer in case the option ’pow2’
% is given as ’y’ (see SPECSYN2) or sampling must
% be adjusted for the source dimensions
%
% grd - slip function to be defined on grid-nodes or subfaults
% ’nod’ for grid-node definition [grid-size (L/dx+1)*(W/dz+1)]
% ’sub’ for sub-fault definition [grid-size (L/dx) * (W/dz)]
%
% nexp - non-linear scaling exponent for the random field (i.e S = S^nexp)
% nexp < 1 smoothens the fields (steepens the spectrum)
% nexp == 1 doesn’t change anything (default)
% nexp > 1 roughens the field (flattens the spectrum)
% the purpose of this variable is to allow for simulation of

05/22/03
15:58:43 3README

% slip distributions with large peak-slip values;
% a good choice for that is usually nexp = 1.25 - 1.5;
%
% wlevel - method to scale the zero-mean random field to nonnegative slip
% wlevel == []: field "lifted" above zero (default)
% wlevel == 0: values < 0 will be set equal to zero
% wlevel == -1: values < 0 will be set to small random value
% wlevel == -2: values < 0 will be set to 0.25*field value
% wlevel == -3: values < mean-slip set to small random value
% wlevel == scalar: values < scalar set to small random value
% NOTE: wlevel = [] preserves the spectral decay; wlevel = -2
% also preserves the slip spectrum rather well without intro-
% ducing too much artificial high-wavenumbers, yet scales the
% slip such that locally large-slip patches are present
%
% taper - tapering the edges of the slip model
% [left/right top bottom] (in km) for customized tapering
% ’y’ for default tapering of 2.5 km (i.e [2.5 2.5 2.5])
% [left/right top bottom P] where P is an exponent smaller 1,
% applies an additional ’depth-taper’ of the form z^P
% (i.e.some kind of sqrt-function) to mimick less slip in the
% upper crustal regions close to the surface
%
% depth - max. depth of rupture plane;
% option with depth range [zmin zmax] not implemented
% zmin is the depth to the top of the fault plane
% zmax is the maximum depth of fault plane (in km)
% (default: zmin = 0, zmax =15)
%
% dip - dip angle of fault plane (in degrees) (default = 90 deg)
%
% fig - optional: ’y’ to view the slip realization; this will open
% a figure window for each realization (set to ’n’ if called
% in a loop) (default: ’y’)
%
% outfile- optional: string for a filename to which the code writes
% the slip realization as a simple ascii 2D-array, where rows
% correspond to depth (default: ’n’)
%
% OUTPUT:
% S - 2D-slip distribution
% par - structure with all relevant source parameters
#
--
#
END OF README FOR SLIPREAL

--

